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1. Introduction 

Demand response is an increasing part of the energy policy agenda in the United States.  

The Federal Energy Regulatory Commission (FERC) has undertaken major initiatives to 

encourage the incorporation of demand response in the wholesale markets, the American 

Recovery and Reinvestment Act of 2009 (aka, “the stimulus bill”) has provisions 

supporting demand response, and many states have instituted demand response initiatives 

or are contemplating whether to do so.2   

 

Demand response is a reduction in demand designed to reduce peak demand or avoid 

system emergencies.  In this regard, demand response can be a more cost effective 

alternative than adding peaking generation in trying to meet occasional demand spikes.  

The top 1 percent of hours for many electric power systems accounts for over 10 percent 

of the demand (measured in MW of capacity), as illustrated in Figure 1 for the system we 

studied.3   In the year studied, the peak load was 44,961 MW and the top 87 hours 

accounted for 11 percent of the demand.  In order to satisfy this demand, generation that 

runs infrequently must be available to meet that demand.  Demand response is meant to 

reduce demand during those top hours, and therefore, avoid the capacity costs associated 

with generating units that only run a few hours out of the year.  In integrated resource 

                                                 
1 The authors are employees of Analysis Group in San Francisco and would like to thank Matt Barmack, 
Peter Cappers, Jack Ellis, Rodney Frame, Carl Silsbee, and Susan Tierney for their helpful comments and 
suggestions.  The views in this paper represent the views of the authors alone, not the views of Analysis 
Group.  Questions and comments may be addressed to rearle@analysisgroup.com. 
2 In 2008, California approved default dynamic rates for electric power customers, and Colorado, 
Maryland, and Ohio encouraged demand response with regulatory measures or legislation.  Also, the FERC 
issued a final rule, Order 719, in October 2008 that was intended to remove a number of barriers to demand 
response participation in organized markets.  See FERC (2008), Assessment of Demand Response and 
Advanced Metering.  
3 The system analyzed is a combination of CAISO and SMUD using load from 2002.  Complete details can 
be found in Kahn (2004). 
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planning (IRP), demand response is one method in portfolio of resources to meet peak 

load and reliability criteria.  This paper examines the reliability contribution of certain 

demand response programs. 

 

 

Figure 1 - Load Duration Curve for CAISO (2002)
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While demand response comes in many flavors, pricing programs that give consumers 

price signals that vary over time (to induce reduction during times of peak demand) are 

an increasing focus of utilities, regulators, and policy makers.4  In the case where the 

time periods are not fixed ahead of time in the tariff, as with time-of-use programs, these 

programs are often referred to as dynamic pricing.  Two typical programs under this 

category are critical peak pricing (CPP) and peak time rebate (PTR).  Under CPP, certain 

hours (for example, noon to six) are designated critical peak hours.  On the days that the 

utility designates as a critical peak day or event day, the consumer pays more than the 

usual tariff during critical peak hours.  Which days are critical peak days are not known 

until the day before or the same day as the critical peak day.  There is usually a limit on 

                                                 
4 Different types of demand response programs include direct and indirect load control, dynamic pricing 
programs, etc.  See Earle et al. (2008) for an overview of various types of demand response. 
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the number of critical peak days during the year and often they are restricted to the 

summer season.  Figure 2 illustrates the concept.   

Figure 2 - Critical Peak Pricing (CPP) 
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PTR shares a similar design to that of CPP in that the utility selects days when the 

program is active during peak hours, but instead of charging the customer more for usage 

during peak periods, customers are given a rebate for less consumption during times 

selected as critical periods.  Figure 3 shows how PTR essentially looks like the inverse of 

CPP during critical periods.5   

                                                 
5  The roots of such programs can be traced back to long-standing programs of many utilities that offered 
large industrial customers a price break in all hours for signing up to a rate where their supply could be 
interrupted for a short duration a maximum number of times during a year.  Those programs suffered from 
the “take-the-price-break-for-granted” problem, when the utility found that it did not need to interrupt the 
customers for many years at a time, and then needed to, to the dismay and grumblings of the interruptible 
customers who had begun to feel entitled to not being interrupted.  The design of these newer approaches 
tends to tie the demand reduction more closely to the payment for it.  Letzler (2007) gives a discussion of 
PTR type programs in the context of behavioral economics. 
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Figure 3 - Peak Time Rebate (PTR) 
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Under most designs of either CPP or PTR, the critical period is a fixed time of day with a 

maximum number of critical periods per year.  For example, Pacific Gas & Electric and 

Southern California Edison have explored CPP/PTR designs with critical periods 

between noon and 6 PM that occur at most 12 times per year.  That is, though there may 

be more than 12 times a year when stress conditions arise, 12 days is the maximum for 

which the customer might be exposed to “supranormal” prices.  Because the value of 

demand response is largely due to avoided capacity costs, in order to get the most value 

out of CPP or PTR demand response programs, it is essential to carefully choose the 

periods to activate the programs in which capacity is needed the most.  To examine the 

capacity impacts of these programs, we tested program impacts against a variety of 

scenarios with a reliability impacts model using California data from 2002.   

 

Though the year 2002 was chosen as a test year primarily because of the availability of 

data, and while our exact results are dependent on the particular system and program 

designs studied, the general nature of the results is likely to hold for systems that are 

relatively more stressed than the one we have examined.  As a result, we are able to draw 

- 4 - 



Draft 

some general conclusions.  First, at relatively low levels of demand response, CPP and 

PTR programs can provide close to 100% of the capacity value relative to the amount of 

demand reduction.  In other words, at low levels of demand response, these programs 

provide almost a MW of capacity value for a MW of demand response.  Second, as 

demand response levels increase, the capacity value of demand response can decrease 

significantly.  Thus, the capacity value of the studied demand response programs is 

subject to decreasing returns.  Third, as the amount of actual response increases (rather 

than the enrolled MW or number of participants), flexibility in program design becomes 

increasingly important.  However, there are important tradeoffs between having the 

simplicity of rate design that results in transparent and understandable rates, and dynamic 

prices that meets its full potential.  Fourth, because there is not yet full implementation of 

these programs, little is currently known about the variability of the level of response.  

Demand response that provides 1000 MW of reduction with certainty during a critical 

period will likely have a greater impact than demand response that has an average 

response of 1000 MW but may be more or less than that average.   

 

The rest of this paper is organized as follows.  Section 2 discusses the model used to 

study the capacity impacts of mass market dynamic pricing, as well as presents basic 

results demonstrating the decreasing returns to scale for CPP and PTR programs.  Section 

3 discusses sensitivity runs of the model that explore the importance of program design 

choices and flexibility in the deployment of demand response.  This is followed by 

Section 4 which examines the impacts of the variability and uncertainty of demand 

response on its capacity value.  Finally, Section 5 concludes the paper with some policy 

implications that arise from the work presented in this paper.   

 

2. Modeling Demand Response Capacity Impacts and Decreasing Returns to Scale 

 

Just as with thermal units, the reliability impacts of demand response programs depend 

on a variety of factors.  Thermal units with higher forced outage rates naturally contribute 

less to reliability than do units with smaller forced outage rates.  Moreover, large thermal 

units contribute less to reliability on a MW per MW basis than smaller units with the 
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same forced outage rate.  Power system engineers have developed reliability indices and 

applied them to making incremental assessments of new capacity additions.  The 

literature on reliability measurements of power systems goes back over 50 years with 

probability measures introduced in the late 1940s.6  One of these indices, the loss of load 

expectation (LOLE) index, measures the expected number of hours with loss of load 

within a year.  The often used “one day in ten years” criterion commonly cited as a 

planning objective for LOLE means that LOLE should be about 2.4 hours per year.7   

 

The effective load carrying capacity (ELCC) is defined by as the amount of new load that 

can be added to a system at the initial LOLE after a new unit is added.8  ELCC can be 

expressed in terms of the percentage of the rated capacity of a unit and has been used to 

measure the capacity contribution of wind resources.9  The box insert, Reliability 

Indices, gives a more detailed description of ELCC. 

 

We can measure the ELCC of a demand response program in a similar manner, and have 

adapted the approach in Kahn (2004) for this purpose.  Load data from 2002 for CAISO 

is used along with publicly available data on thermal unit capacities and forced outage 

rates.  As new thermal units were added throughout the year, they were added to the 

model.  Publicly available hydro generation data was available from the year 2000 and 

this generation was applied in a deterministic fashion to the 2002 load.  The hydro 

generation was applied to the load by matching the highest hydro generation hour against 

the highest load hour and so on through to the lowest hydro generation hour against the 

lowest load hour.  Kahn (2004) uses this method and also tests another method of 

                                                 
6 Calabrese (1947). 
7 There is some confusion about precise interpretation of the tradition “one day in ten years” criterion. It 
was originally developed when computational resources were relatively expensive and LOLP calculations 
represented load as one peak demand value per day. Using an hourly load model results in something less 
than 2.4 hours per year when the same system is evaluated with an hourly load model as opposed to 
assuming that load in every hour of the day is the peak load. One test of these relationships found an LOLE 
expressed in hours/year of 0.25 corresponding to 0.1 days/year using the daily peak model (see Jamali 
(1979)).  For ELCC calculations in large systems, the precise interpretation may not matter much since the 
LOLE versus peak load profile has an almost linear shape on log-linear scales for LOLE values below 0.3 
days/year (see Billinton and Allan, 1984, Figure 2.10). 
8 Garver (1966). 
9 Kahn (2004).   
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matching hydro generation against load and finds that the results do not differ 

significantly.  Imports are also treated deterministically in our calculations. 

 

The reliability measure LOLE is sometimes criticized because it only measures the 

expected amount of time that outages will occur as opposed to the expected amount of 

unserved energy (EUE) or load not met.  For a given system, an hour with 100 MW of 

unmet load is logically worse than an hour with only 5 MW of unmet load.  In general, 

this is a valid concern.  However, for the system we have examined, the LOLE and EUE 

correspond closely and using one measure or the other to define ELCC makes no material 

difference to our results.   

 

For the initial results, the simulation assumed that the critical peak period was between 

noon and 6 PM with 12 critical peak days to be called during the summer months (June 

through September).  An assumption was made that the program would be deployed to 

maximum effect for reliability purposes.  In other words, the operator of the program 

would choose with perfect foresight the days that would be best to declare critical peak 

days, which in turn increases the measured ELCC of the program.10  This assumption is 

relaxed in the next section to show the importance of choosing the right days to declare to 

be critical peak days.  Another key assumption is that the demand response amount is 

perfectly knowable and predictable.  In reality, this is certainly not the case, and is 

examined in Section 4.  The effect of this assumption is to raise the measured ELCC, thus 

giving more capacity credit to the demand response program than it is likely to achieve.  

Finally, many anticipate that mass market dynamic pricing programs will achieve little 

net energy savings.11  In other words, while consumers may reduce their demand during 

the critical peak hours, they increase their consumption during the non-critical peak 

hours, so, on an energy basis, consumption is not reduced.  Consumers seem to substitute 

consumption in one time period for another. 
                                                 
10 Other than these assumptions, the simulation is agnostic with respect to other aspects of program design 
such as when the price signal is issued, what type of price signal, or how the response is achieved (through 
a customer behavior or through automation). 
11 See, for instance, Faruqui and Wood (2008) for a discussion of the general level of various types of 
impacts from dynamic pricing. York and Kushler (2005) discusses the nexus between energy efficiency and 
demand response and how one measure may reinforce effects in the other.  IBM (2007) and Summit Blue 
(2006) find some conservation effects. 
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The initial results present two scenarios of the ELCC measurement with respect to this 

substitution.  In the first, there is no substitution effect, so that reductions during critical 

peak result in net energy savings of the same amount.  The second scenario produces a 

very mild substitution effect in which the reduction during critical peak hours results in 

an increase in consumption over all the other 18 hours of the critical peak day.  So that, if 

there is 300 MW of reduction during the critical peak hours, noon to 6 PM, all the other 

hours in the critical peak day have an increase in consumption of 100 MW.  This very 

mild substitution effect is used in order to be conservative in our estimates of ELCC.  It 

would stand to reason that the decreased consumption between noon and 6 PM would 

tend to increase consumption on hours closer to the critical period such as 6 PM to 10 PM 

rather than 2 AM as in our assumption.  Nevertheless, it appears there is very little or no 

empirical evidence for how the substitution effect plays itself out over the hours of a day.  

More study of the timing of potential substitution effects will be important as systems 

increase their reliance on demand response and as new end uses like PHEV (plug-in 

hybrid electric vehicles) enter the system.12 

 

The initial results under the assumptions outlined above are shown in Figure 4.  The 

figure shows the MW of demand response (actual amount of reduction as opposed to the 

enrolled MW) versus the ELCC as a percentage of the MW of demand response.  The top 

axis gives the demand response as a percentage of the annual system peak. 

                                                 
12 In this regard, the work of NERC to establish standards for gathering data on demand response may be 
critical.  See NERC, Data Collection for Demand-Side Management.  Centolella and Ott (2009) suggest 
some methods to better understand the intra-day effects of demand response. 
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Figure 4 - ELCC as Percentage of Demand Response MW
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At relatively low levels of response, the ELCC of demand response is nearly 100%.  The 

selected hours are able to effectively pick off the most critical hours and increase 

reliability nearly to the same amount of the response.  As the MW response increases, 

however, a decline is seen in the value of response.  At a demand response level of 2,248 

MW, which is roughly equal to 5% of peak demand, demand response has an ELCC of 

about 90 percent with no substitution effect and less than 80% with the mild substitution 

effect.  5000 MW of demand response shows significantly degraded ELCCs of about 

50% and 20% for the no substitution scenarios and the substitution scenarios 

respectively.13   

 

For economists, as dismal scientists, these decreasing returns to scale are not surprising 

as a matter of principle.  But why do they occur in this case?  One answer can be found 

                                                 
13 By comparison, one of the few public references on the ELCC of demand response can be found in the 
Arizona Public Service Company’s Resource Plan Report (p. 97).  For a variety of commercial and 
industrial load management programs they report an ELCC between 70 and 80 percent. They do not, 
however, seem to report the percentage of peak demand that the load management programs comprise. 
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by going back to Figure 1 of the system load duration curve.  The demand response 

program modeled has 72 hours of impact that occur over noon to 6 PM during twelve 

days.  Through examination of the data on when peak demand occurs, we see that the top 

72 hours of the year accounting for 10% of system peak are actually spread over 17 days 

rather than 12.  This means that the program as designed cannot capture all of the top 72 

hours.  Moreover, even if the program could be spread over 17 days rather than 12, 5 of 

the top 72 hours occur outside the noon to 6 PM window.  More importantly, however, is 

that at a certain point, reductions in demand during the critical peak window do little to 

increase reliability.  Figure 5 shows a demand response of 3000 MW on 08/01/02 with no 

substitution effect.   

Figure 5 - Example of a Demand Response Program with No Substitution Effect
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While the pre-existing peak is eliminated, the shoulder hours now constitute a new peak.  

With the substitution effect, demand response “fangs” are created with the increase of 

load in the non-critical peak hours.  Figure 6 illustrates this effect.   

- 10 - 



Draft 

Figure 6 - Example of a Demand Response Program with Substitution Effect 
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As a result, to the degree that there is substitution, that is, increased consumption in non-

critical peak hours to match decreased consumption in critical peak hours, the capacity 

value of CPP and PTR type demand response programs will be much less than with no 

substitution.  Substitution effects that are more likely to be realistic (such as substitution 

only to the hours close to the critical peak period) would show degradation of the 

capacity value of the demand response program that is even more severe. 

 

What drives these results?  Most of the LOLE (or EUE) occurs within just a few hours 

out of the year.  The top 20 hours in the year account for over 99% of the LOLE with 

these hours all occurring in just four summer days as shown in Figure 7.14   

                                                 
14 The numbers are from our calculation of LOLP for each day in the simulation. 
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Figure 7 - Top 20 Hours LOLP as Percentage of LOLE
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As a result, targeting those hours is key.  However, once those hours are targeted – and 

they seem to be targeted fairly well with the particular year examined and the program 

design that was simulated – reducing the LOLP or EUE for a particular hour by reducing 

demand quickly exhausts itself.  Other hours now start to dominate the LOLE 

calculations and programs that can target those hours help retain the effectiveness of 

demand response programs as measured by ELCC.  Hence, flexibility of program design 

and hours targeted can be important in achieving effectiveness.  These results depend, of 

course, on the system, but given the “peaky” nature of many systems in the U.S. it seems 

quite possible that these results are not peculiar to the particular system and year we have 

examined.  The next section addresses these issues of flexibility and targeting of the right 

hours. 

 

To the degree that other systems do not have most of their LOLE concentrated in just a 

few hours, as in Figure 7, then the results of our simulation would differ.  However, such 

systems would have a much less “peaky” load shape than the one we have examined and 

thus would not need demand response as much as the system we have examined. 
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3. How much does flexibility in demand response program design and 

deployment affect its capacity value? 

 

The previous section showed that demand response from CPP and PTR type programs 

degrades in its reliability or capacity value as the amount of demand response provided 

increases.  These results suggest that increased flexibility in program design as well as 

programs complementary to CPP/PTR could greatly increase their value.  Discussions of 

CPP/PTR programs tend to have fixed hours for critical peak periods and limited number 

of days in which they occur.  This is because rate designers and regulators are concerned 

whether consumers are able to understand and react to dynamic prices.15  In the 

simulation from the previous section, for instance, critical events were limited to 12 days 

during the summer and only between noon and 6 PM.  The ability to target other days and 

other hours would enhance the effectiveness of the demand response program, but at the 

cost of making the rules of the program more complicated for consumers.  Prices that 

have overly complicated rules make it difficult for consumers to react to them so that 

both inefficiency of response as well as unhappiness with the tariff regime arise.  There 

are many alternative rate designs for dynamic pricing and some of these take into account 

the need for flexibility.  CPP-V (CPP Variable), for example, is a variant on CPP that 

allows for a flexible critical peak period.  

 

Automation on a large scale through efforts such as the smart grid may well be the 

answer that allows for more flexible and therefore more valuable demand response.  The 

so-called “Ron Popeil” effect is where customers can set their preferences ahead of time 

and not have to pay direct attention in real time to fluctuating prices.  That is, as Popeil is 

famous for saying about many of his kitchen appliances, “Set it, and forget it.”  Whether 

smart grid, home automation, and the like can make demand response much more 

flexible while keeping rate structures acceptable to consumers and whether it is cost-

effective to do so are questions beyond the scope of this study.  However, in order to 

                                                 
15 See Bonbright et al. (1988) for the classic list of ratemaking criteria which include simplicity and 
understandability as important attributes. 
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examine the potential capacity value of such efforts, we calculated what the maximum 

capacity impact of a completely flexible demand response portfolio would be.  For a 

given CPP/PTR program size we assumed that the equivalent number of MWh of 

demand reduction would be available whenever needed across all hours.  So, for 

example, for a CPP/PTR program with 1000 MW of impact for 6 critical peak hours on 

12 days, we calculated the impact of 72,000 MWh16 of demand reduction.  To simulate 

what the maximum effectiveness of completely flexible demand response might be, the 

demand reduction was allocated to the hours by shaving peak so that the hours with the 

highest demand are reduced first.17  The results measuring the capacity value of demand 

response flexibility are shown in Figure 8.   

Figure 8 - The Value of Flexibility as Percentage of Demand Response
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The CPP/PTR line (the lower of the two) shows our basic results for the CPP/PTR 

program discussed above (12 critical days, noon to 6 PM, no substitution effect).  The 

maximum flexibility line shows the ELCC with the same number of MWh of demand 

response are deployed in order to shave peak.  At low levels of demand response (MW 
                                                 
16 72,000 MWh = 1000 MW x 12 days x 6 hours/day. 
17 While this approach might not result in the precise maximum ELCC for completely flexible demand 
response, given the close relationship for the system studied between the level of demand and LOLP, it is 
likely very close. 
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reduction), the flexible demand response provides more than 100% ELCC.  This is 

possible, of course, because more than the program amount can be deployed in a given 

hour.  For instance, even though the program size may be 1000 MW, the very top peak 

hour can be shaved by more than 1000 MW.  The impact of flexibility starts to decline 

rapidly, however, as the program size increases.  This is not surprising since as we shave 

the load shape more and more, the additional MWh get spread across more hours 

resulting in less net gain from additional MWh of demand response. 

 

The difference between the two lines in Figure 9 shows the maximum that can be gained 

above the CPP/PTR baseline by making demand response flexible.  For relatively small 

program sizes, the value of flexibility is quite high, but it quickly decreases as the 

program size increases.  While the exact value of flexibility from a reliability/capacity 

point of view is system dependent, and the pace of decrease of that value as program size 

increases is also system dependent, it seems likely that the general picture we have found 

for the system studied in this paper holds more generally.  As the program size increases 

returns to flexibility in deployment of demand response decrease because the hours that 

contribute the most to LOLP or EUE have already been addressed.18 

 

 

4. Uncertainty of Demand Response 

Although they accept that demand response programs can provide peak reduction, there 

are many who are still concerned that the level of demand response is uncertain.  For 

example, 1000 MW of reduction might be expected, but the actual amount of reduction 

realized could be some number either greater or smaller than 1000 MW.  For this reason 

they are reluctant to count demand response programs in resource adequacy.  While there 

is little evidence about the variability of response, the California Statewide Pricing Pilot 

(SPP) provided some insights.19  In that pilot, various demand response programs were 

tested and it was possible to calculate the variability of response.  Ninety-five percent 

confidence intervals ranged from plus or minus 6% to 18% of the mean response.  So, for 

                                                 
18 It should also be noted that we have assumed perfect foresight so that the capacity value implied by each 
of the lines in the figure is likely overstated. 
19 See Faruqui and Woods for a summary of the SPP. 
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example, if the expected response level was 1000 MW, using 10% as the variability of 

the response, the range 900 MW to 1100 MW covered the actual response with 95% 

probability.20  To test the impacts of the uncertainty of demand response, we introduce a 

probability distribution in our model to make demand uncertain.21  We estimate the 

ELCC for various levels of demand response uncertainty as measured by the coefficient 

of variation (i.e. standard deviation divided by the mean).  The programs tested in the 

California SPP, for example, had coefficients of variation of around 3 to 9%.  A 

generating unit with a forced outage rate of 5% has a coefficient of variation of 23%.22 

 

The results from the simulation of uncertain demand response are shown in Figure 9.   

                                                 
20 See, Earle et al. (2008).  The pilot tested a variety of CPP style programs. 
21 A discrete distribution with a triangular shape was used for ease of computation.  It seems unlikely that 
the particular form of the distribution is of much consequence in the results.  We also assume that the 
amount of realized demand response is independent of system load.  This might not be true as there may be 
more air conditioning load to reduce on a day that is particularly hot meaning a positive correlation 
between load and demand response.  On the other hand, on a particularly hot day, consumers may be more 
reluctant to reduce their air conditioning load resulting in a negative correlation between demand response 
and load. 
22 Simply comparing the coefficients of variation of a generating unit and demand response programs does 
not give an adequate comparison as the shapes of their distributions are very different.  The coefficient of 
variation of a generating unit with a 5% effective forced outage rate is high because it cannot produce 
anything for 5% of the time. 
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Figure 9 - ELCC as Percentage of Demand Response
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Figure 9 shows the ELCC as a percentage of expected or mean demand response at a 

series of expected response levels, ranging from 1000 MW to 5000 MW, at different 

levels of uncertainty of the response as measured by the coefficient of variation.  The line 

with a coefficient of variation of 0% is our basic result with no substitution effect, as 

reported in Section II above.  As shown the Figure 9, a coefficient of variation of 12% 

makes only a small difference in the reliability effectiveness of the demand response 

program.  At 30% and 45% coefficient of variation, however, the demand response 

program suffers degradation due to its variability.  One of the interesting aspects of the 

chart is that uncertainty effects start to disappear at higher demand response levels.  For 

example, at 30% coefficient of variation, the demand response program suffers in 

effectiveness relative to the certain demand scenario (0% coefficient of variation) at 

relatively low levels of expected demand response (1000 to 3000 MW).  At higher levels 

of demand response, however, the results are close to the certain case.  While this sounds 

good for higher demand response levels, it must be remembered that at those high levels 

the capacity value of demand response is significantly degraded.  One possible 

explanation is that, as the program size increases, neither the upside of having more 
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demand response by chance helps much nor losing a little hurts much since those are not 

likely to have high capacity value anyway.   

 

An important conclusion from the examination of uncertain demand response follows if 

one thinks that the available evidence from the California SPP is an accurate 

measurement of the potential uncertainty in CPP/PTR type programs.  In this situation, 

the uncertainty of the level of response is likely to have little effect on the capacity and 

reliability value of these demand response programs.  The California SPP evidence 

suggests a coefficient of variation of between 3 and 9%.  At 12% coefficient of variation 

response shows little difference from certain response as seen in the Figure 9.  As with 

the other results in this paper, while they would seem likely to hold for a broad category 

of cases, the results have only been simulated on one particular system configuration. 

Simulations particular to the system in question should be conducted before policy 

conclusions are made for that particular system. 

 

5. Policy Implications and Conclusions 

 

This paper has examined the capacity impacts of particular types of demand response 

programs using data from California during 2002.  While CPP/PTR programs have 

constraints in how they are operated, in terms of the number of days and limitations on 

the hours of operation (i.e., the peak period), they offer benefits by increasing system 

reliability, and therefore, reducing capacity needs of the electric power system.  These 

benefits, however, decrease substantially as the size of the programs grows relative to the 

system size.  More flexible schemes for deployment of demand response can help address 

the decreasing returns to scale in capacity value, but more flexible demand response has 

decreasing returns to scale as well.  The apparent good news for demand response from 

this study is that the little evidence that there is on the uncertainty of the level of demand 

response suggests that uncertainty does not reach a level that greatly impairs its ability to 

contribute to reliability.  All of these conclusions depend on the types of programs 

studied and the particular system examined.   However, as discussed above, there are 
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good reasons to think that the same conclusions would hold true for other systems as 

well.   

 

Several potential policy implications emerge out of these conclusions.  First, when 

measuring demand response potential or demand response program cost effectiveness, it 

is typically assumed that the reliability effectiveness or capacity value of the program 

does not decrease with added demand response relative to the overall size of the system.  

This assumption seems unlikely to be true, and the probable decreasing returns to scale 

may have rather large impacts on overall program potential and its cost effectiveness.  As 

policy makers look towards massive deployment of demand response, these impacts will 

become increasingly important. 

 

Second, the results on the added capacity value of flexible demand response above that of 

CPP/PTR type programs suggests that the capacity value in smart appliances, home 

automation, and the like, perhaps comes in two forms.  As enablers of CPP/PTR 

programs, they will increase the average response rates in the programs by making it 

easier for consumers on dynamic rates to respond.23  Automation may also make it easier 

for more flexible definition of dynamic rates by targeting those demand reduction hours 

that do not necessarily fall within a pre-defined critical peak window.  Both of these 

effects of automation will tend to decrease as the amount of demand response in a system 

increases.  Policy makers should incorporate these effects and their decreasing returns to 

scale in their ratemaking decisions and smart grid policies. 

 

Third, there is little evidence available on the uncertainty of demand response from mass 

market programs such as CPP/PTR.  As we demonstrate in our simulations, uncertainty at 

fairly high levels can have a dramatic impact on the capacity value.  While the small bit 

of evidence from the California SPP suggests that the level of uncertainty is not great 

enough to materially decrease the capacity value of mass market demand response, more 

evidence is needed to better understand the uncertainty of demand response. 

                                                 
23 In this regard, it is possible to imagine that automation might decrease the uncertainty of demand 
response by removing the behavioral component in the response other than the initial system configuration. 
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Inset Box 1: Reliability Indices  
 
Perhaps the most basic probabilistic reliability index is the loss of load probability 
(LOLP) index introduced by Calabresse in the 1940s.1  By LOLP we mean the 
probability of an outage in a given hour.  That is, the probability that in a given hour the 
amount of available generating capacity is less than load.  The loss of load expectation 
(LOLE) as defined in the main text is the expected number of hours of outage in a given 
year.  This is simply the sum of the LOLP for each hour over the number of hours in a 
year.2   
 
The effective load carrying capacity (ELCC) reliability measure was developed in order 
to measure the reliability impacts of units.3  ELCC is the amount of new load that can be 
added to a system after a new unit is added while keeping the same level of reliability as 
measured by LOLE.4  So, ELCC measures the capacity contribution of a unit to a power 
system.   
 
It is important to note that the ELCC is both dependent on the unit itself as well as the 
system to which it is added.  For example, units that are relatively large compared to the 
system as a whole will have a lower ELCC than units whose capacity make up a smaller 
percentage of total system capacity other things being equal.  The capacity contribution 
of thermal units is often thought of as being equal to their derated capacity where the 
derated capacity is the full unit capacity times one minus the forced outage rate.5  The 
ELCC of a thermal unit, however, can be less than the unit’s derated capacity.  As a 
result, comparing the derated capacity of thermal units to each other is not a completely 
fair comparison of the contribution to reliability of each unit.  More to the point for this 
discussion, comparing the ELCC of demand response (or other resources to the derated 
capacity of thermal units) will tend to make demand response appear to contribute 
relatively less to reliability than thermal units.  An alternative that perhaps could provide 
more direct comparison for demand response would be to calculate the number of 
combustion turbine equivalents (ETCs).  In other words, in order to achieve the same 
level of LOLE as the resource added, how many combustion turbines would have to be 

                                                 

iLOLP
8760

1
i

i
LOLE LOLP

=

= ∑ Pr( )i j i

1 Our terminology differs a little bit from the original terminology in that LOLP originally meant the 
number of days per year of expected capacity shortages.  More precisely speaking, this is an expectation 
rather than a probability, so we use the term LOLP, as others do, to refer to the probability of outage in a 
given hour. 
2 If for hour i we write the loss of load probability as , then LOLE can be written as 

. And, LOLP C L= <∑  where C  is the random variable of 

capacity of generating unit j in hour i and  is the load in hour i. 

j

iL

Pr( ' )j iLOLE C C L ELCC= + < +∑ ∑

3 Garver (1966). 
4 If C’ is the random variable of new capacity, then ELCC is the MW of new load added to each hour such 
that  where LOLE is the original loss of load expectation 
before adding the new unit C’. 
5 In other words, a thermal unit with capacity of 100 MW and a forced outage rate of 5% (or .05) is credited 
with providing 95 MW of reserves. 
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added to the system.  A drawback of this measure is that it is even more system specific 
and dependent than ELCC because the appropriate combustion turbine to use as the 
equivalent will vary in size and forced out rate depending on the system. 
 
It is sometimes objected that LOLP and LOLE are not good measures of system 
reliability because they are only measures of the probability of outage or the expected 
amount of time with outages.  An outage of 100 MW over an hour has a greater reliability 
impact than an outage of 10 MW.  Even if the 100 MW outage has half the probability of 
the 10 MW outage, the 100 MW outage should be given more weight than the 10 MW 
outage.  While the LOLP and LOLE measures do not do this, an alternative measure, the 
expected unserved energy (EUE) weights the size of the outage with the probability of 
the outage to give a measure that takes this into account.  Simply put, the EUE is the 
average number of MWh of outage one could expect to incur. 
 
ELCC can then be redefined in terms of EUE rather than LOLE, so than the ELCC could 
be defined as the amount of load that can be added in each hour until the EUE is the same 
as before the resource was added to the system.  In principle this method using EUE can 
result in a different answer for ELCC than when using LOLE.  For the system we have 
studied, however, using EUE rather LOLE results in very little difference in the results, 
so we have only reported the results using ELCC as defined with LOLE.  Moreover, 
LOLE and EUE are closely related in that LOLE is the marginal rate of increase in EUE.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
6 That is, if the load increased by a small increment in every hour, the LOLE gives the resulting rate of 
increase in the EUE. 


